Data mining

来自开放百科 - 灰狐
(版本间的差异)
跳转到: 导航, 搜索
(课程)
(链接)
 
(未显示1个用户的7个中间版本)
第4行: 第4行:
  
 
数据挖掘是从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示三个步骤。数据准备是从各种数据源中选取和集成用于数据挖掘的数据;规律寻找是用某种方法将数据中的规律找出来;规律表示是用尽可能符合用户习惯的方式(如可视化)将找出的数据呈现出来。
 
数据挖掘是从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示三个步骤。数据准备是从各种数据源中选取和集成用于数据挖掘的数据;规律寻找是用某种方法将数据中的规律找出来;规律表示是用尽可能符合用户习惯的方式(如可视化)将找出的数据呈现出来。
 +
 +
==简介==
 +
[[machine learning|机器学习]]和[[database|数据库]]是数据挖掘的两大支撑。
 +
 +
==理论==
  
 
==项目==
 
==项目==
第23行: 第28行:
 
*Improving the computational performance of the implementation.
 
*Improving the computational performance of the implementation.
 
以上信息来源《Scala for Machine Learning》
 
以上信息来源《Scala for Machine Learning》
 +
 +
==数据预处理==
 +
*[[Pentaho]] [http://events.pentaho.com/data-prep-starter-kit.html Data Preparation Starter Ki]
 +
*[https://www.gartner.com/doc/reprints?id=1-3GQGPV9&ct=160901&st=sb Market Guide for Self-Service Data Preparation]
 +
*[http://docs.huihoo.com/data-science/Imporving-Data-Preparation-for-Business-Analytics-Best-Practices-Report-Q3-2016.pdf Improving Data Preparation for Business Analytics]
  
 
==分析方法==
 
==分析方法==
第83行: 第93行:
 
image:data-mining-interdisciplinary.png|跨领域跨学科
 
image:data-mining-interdisciplinary.png|跨领域跨学科
 
image:data-mining-ubiquitous.png|无所不在
 
image:data-mining-ubiquitous.png|无所不在
 +
image:From-Data-To-Intelligence.png|从数据到智能
 +
image:self-service-data-preparation.png|数据预处理
 +
image:Gartner-Magic-Quadrant-for-Data-Integration-Tools-August-2017.png|数据集成工具魔力象限
 
</gallery>
 
</gallery>
  
第89行: 第102行:
  
 
[[category:data mining]]
 
[[category:data mining]]
[[category:business intelligence]]
 
 
[[category:data analysis]]
 
[[category:data analysis]]
 
[[category:data science]]
 
[[category:data science]]
 +
[[category:computer science]]
 +
[[category:machine learning]]
 +
[[category:database]]
 +
[[category:business intelligence]]

2022年8月9日 (二) 10:50的最后版本

Wikipedia-35x35.png 您可以在Wikipedia上了解到此条目的英文信息 Data mining Thanks, Wikipedia.

data mining 数据挖掘

数据挖掘是从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示三个步骤。数据准备是从各种数据源中选取和集成用于数据挖掘的数据;规律寻找是用某种方法将数据中的规律找出来;规律表示是用尽可能符合用户习惯的方式(如可视化)将找出的数据呈现出来。

目录

[编辑] 简介

机器学习数据库是数据挖掘的两大支撑。

[编辑] 理论

[编辑] 项目

[编辑] 工作流

一个通用数据挖掘工作流包含以下步骤:

  • Loading the data.
  • Preprocessing, analyzing, and filtering the input data.
  • Discovering patterns, affinities, clusters, and classes.
  • Selecting the model features and the appropriate machine learning algorithm(s).
  • Refining and validating the model.
  • Improving the computational performance of the implementation.

以上信息来源《Scala for Machine Learning》

[编辑] 数据预处理

[编辑] 分析方法

数据挖掘的十种分析方法:

  • 记忆基础推理法
  • 市场购物篮分析
  • 决策树(Decision Trees)
  • 基因算法(Genetic Algorithm)
  • 群集侦测技术
  • 连结分析(Link Analysis)
  • 在线分析处理(OLAP)
  • 类神经网络(Neural Networks)
  • 区别分析
  • 罗吉斯回归分析

详细内容见大图

[编辑] 文档

[编辑] 专题

在大数据时代,描述性的数据分析已经无法满足业务的需求,数据预测分析技术正成为商业智能发展的新方向。本系列将为您介绍预测分析技术的总体概述,预测分析的数学算法,预测解决方案的构建过程以及部署等方面的内容。

[编辑] 课程

讲义下载:

[编辑] 厂商

top eight data-mining software vendors in 2008 published in a Gartner study.

  • Angoss Software
  • Infor CRM Epiphany
  • Portrait Software
  • SAS
  • SPSS
  • ThinkAnalytics
  • Unica
  • Viscovery

[编辑] 图集

[编辑] 链接

分享您的观点
个人工具
名字空间

变换
操作
导航
工具箱