欢迎大家赞助一杯啤酒🍺 我们准备了下酒菜:Formal mathematics/Isabelle/ML, Formal verification/Coq/ACL2, C++/F#/Lisp
R
来自开放百科 - 灰狐
(版本间的差异)
小 (→机器学习) |
小 (→项目) |
||
(未显示1个用户的33个中间版本) | |||
第4行: | 第4行: | ||
R的语法来自[[Scheme]]。 | R的语法来自[[Scheme]]。 | ||
+ | |||
+ | ==简介== | ||
+ | [[文件:R-logo.png|right|R]] | ||
+ | [https://www.r-consortium.org/ R Consortium] R联盟,A [[Linux Foundation]] Project. [https://github.com/RConsortium R Consortium @ GitHub] | ||
+ | |||
+ | R Community [https://github.com/RConsortium/IDEA-WG IDEA](Inclusion 包容性, Diversity 多样性, Equity 公平, and Accessibility 可访问) | ||
+ | |||
+ | 在 [https://www.tiobe.com/tiobe-index/r/ TIOBE] 2022年1月对编程语言人气的排名中,R排名第12。R语言长期排在20名以内,发展十分稳健。 | ||
+ | |||
+ | R 以 [https://web.archive.org/web/20181014111802/http://ect.bell-labs.com/sl/S/ S语言]为基础,其语法来自 [[Scheme]]。 | ||
+ | |||
+ | [[Tcl/Tk]] for X11 (optional, needed for the tcltk R package) | ||
+ | |||
+ | ==GNU R== | ||
+ | R is an official part of the Free Software Foundation's GNU project:[https://directory.fsf.org/wiki/R GNU R] | ||
+ | |||
+ | ==版本== | ||
+ | |||
+ | ==项目== | ||
+ | [[文件:r-hub-logo.png|right|R-hub]] | ||
+ | [[文件:R.NET-logo.png|right|R.NET]] | ||
+ | *[https://github.com/qinwf/awesome-R Awesome R] [[image:awesome.png]] | ||
+ | *[https://github.com/r-hub R-hub] | ||
+ | *[https://github.com/ropensci rOpenSci] [https://devguide.ropensci.org/ rOpenSci Packages: Development, Maintenance, and Peer Review] | ||
+ | *[https://cran.r-project.org/web/views/NumericalMathematics.html Numerical Mathematics] 数值数学 | ||
+ | *[https://cran.r-project.org/web/views/DifferentialEquations.html Differential Equations] 微分方程 | ||
+ | *[https://cran.r-project.org/web/views/Optimization.html Optimization and Mathematical Programming] 优化和数学编程 | ||
+ | *[https://cran.r-project.org/web/views/MachineLearning.html Machine Learning & Statistical Learning] [[machine learning|机器学习]]和统计学习 | ||
+ | *[https://cran.r-project.org/web/views/ChemPhys.html Chemometrics and Computational Physics] 化学计量学和计算物理学 | ||
+ | *[https://cran.r-project.org/web/views/Econometrics.html Econometrics] 计量经济学 | ||
+ | *[[RKWard]] | ||
==安装== | ==安装== | ||
第14行: | 第45行: | ||
==图形接口== | ==图形接口== | ||
*[[RStudio]] 是 R 的开源IDE。 | *[[RStudio]] 是 R 的开源IDE。 | ||
+ | *[[RKWard]] 基于 [[KDE]]/[[Qt]] 构建 | ||
*Rattle Gnome cross platform GUI for Data Mining using R | *Rattle Gnome cross platform GUI for Data Mining using R | ||
*Red-R Open source visual programming interface for R | *Red-R Open source visual programming interface for R | ||
第57行: | 第89行: | ||
==文档== | ==文档== | ||
+ | *[https://www.paulamoraga.com/presentation-geohealth R for Geospatial Data Science and Health Surveillance] | ||
*[http://docs.huihoo.com/javaone/2015/CON5361-R-on-the-JVM-with-the-FastR-Runtime.pdf R on the JVM with the FastR Runtime] | *[http://docs.huihoo.com/javaone/2015/CON5361-R-on-the-JVM-with-the-FastR-Runtime.pdf R on the JVM with the FastR Runtime] | ||
==图书== | ==图书== | ||
*[http://book.huihoo.com/data-mining-desktop-survival-guide/ 《Data Mining With Rattle and R》] | *[http://book.huihoo.com/data-mining-desktop-survival-guide/ 《Data Mining With Rattle and R》] | ||
+ | |||
+ | ==开发者作者== | ||
+ | *[https://socialsciences.mcmaster.ca/jfox/ John Fox] | ||
==图集== | ==图集== | ||
第67行: | 第103行: | ||
image:different-types-of-data-into-R.png|各种数据源 | image:different-types-of-data-into-R.png|各种数据源 | ||
image:R-Markdown-Output-Formats.png|R Markdown | image:R-Markdown-Output-Formats.png|R Markdown | ||
+ | image:KDE-RKWard.png|RKWard | ||
+ | image:KDE-RKWard-R-Packages.png|RKWard安装R软件包 | ||
</gallery> | </gallery> | ||
==链接== | ==链接== | ||
*http://www.r-project.org/ | *http://www.r-project.org/ | ||
− | |||
*[http://www.r-bloggers.com/ R Bloggers] | *[http://www.r-bloggers.com/ R Bloggers] | ||
*[http://www.r-bloggers.com/how-to-learn-r-2/ How to Learn R] | *[http://www.r-bloggers.com/how-to-learn-r-2/ How to Learn R] | ||
第81行: | 第118行: | ||
*[https://github.com/yihui/r-ninja R语言忍者秘笈] | *[https://github.com/yihui/r-ninja R语言忍者秘笈] | ||
*[http://terrytangyuan.github.io/2015/11/24/ggfortify-intro/ 一行R代码实现繁琐的可视化] | *[http://terrytangyuan.github.io/2015/11/24/ggfortify-intro/ 一行R代码实现繁琐的可视化] | ||
+ | *[https://cosx.org/2017/05/rdota2-seattle-prediction/ 十行代码预测插旗西雅图] | ||
+ | [[category:GNU]] | ||
+ | [[category:tcl]] | ||
[[category:data mining]] | [[category:data mining]] | ||
[[category:data science]] | [[category:data science]] | ||
第88行: | 第128行: | ||
[[category:programming language]] | [[category:programming language]] | ||
[[category:scheme]] | [[category:scheme]] | ||
+ | [[category:Huihoo Foundation]] |
2023年8月1日 (二) 11:43的最后版本
您可以在Wikipedia上了解到此条目的英文信息 R Thanks, Wikipedia. |
The R programming language, sometimes described as GNU S, is a programming language and software environment for statistical computing and graphics.
R的语法来自Scheme。
目录 |
[编辑] 简介
R Consortium R联盟,A Linux Foundation Project. R Consortium @ GitHub
R Community IDEA(Inclusion 包容性, Diversity 多样性, Equity 公平, and Accessibility 可访问)
在 TIOBE 2022年1月对编程语言人气的排名中,R排名第12。R语言长期排在20名以内,发展十分稳健。
Tcl/Tk for X11 (optional, needed for the tcltk R package)
[编辑] GNU R
R is an official part of the Free Software Foundation's GNU project:GNU R
[编辑] 版本
[编辑] 项目
- Awesome R
- R-hub
- rOpenSci rOpenSci Packages: Development, Maintenance, and Peer Review
- Numerical Mathematics 数值数学
- Differential Equations 微分方程
- Optimization and Mathematical Programming 优化和数学编程
- Machine Learning & Statistical Learning 机器学习和统计学习
- Chemometrics and Computational Physics 化学计量学和计算物理学
- Econometrics 计量经济学
- RKWard
[编辑] 安装
安装Rattle > install.packages("rattle") > install.packages("rattle", repos="http://rattle.togaware.com", type="source") > library(rattle) > rattle()
[编辑] 图形接口
- RStudio 是 R 的开源IDE。
- RKWard 基于 KDE/Qt 构建
- Rattle Gnome cross platform GUI for Data Mining using R
- Red-R Open source visual programming interface for R
- Deducer Intuitive, cross-platform graphical data analysis system
- RKWard Easy to use, transparent frontend
- JGR Universal and unified graphical user interface for R
- R Commander
[编辑] Emacs
[编辑] C++
[编辑] Spark
- sparklyr R interface for Apache Spark
- R on Spark
- H2O
[编辑] Hadoop
[编辑] 数据源
- Flat文件:read.table()、read.csv()
- Excel文件:readxl、gdata、XLConnect
- 统计软件:SAS、SPSS、STATA,Haven: Read SPSS, Stata and SAS files from R
- 数据库:RPostgreSQL、RMySQL
- Web数据:rvest
[编辑] 机器学习
- MXNet
- TensorFlow for R TensorFlow
- AnomalyDetection BreakoutDetection
- CausalImpact
- Code for Machine Learning for Hackers
[编辑] 发行版
[编辑] 文档
[编辑] 图书
[编辑] 开发者作者
[编辑] 图集
[编辑] 链接
分享您的观点