欢迎大家赞助一杯啤酒🍺 我们准备了下酒菜:Formal mathematics/Isabelle/ML, Formal verification/Coq/ACL2, C++/F#/Lisp
Odoo BI
来自开放百科 - 灰狐
(版本间的差异)
小 (→功能) |
小 |
||
(未显示1个用户的7个中间版本) | |||
第1行: | 第1行: | ||
− | + | odoo BI | |
+ | |||
+ | [[文件:Odoo-logo.png|right|odoo]] | ||
==简介== | ==简介== | ||
[[Artificial intelligence|人工智能]]驱动下的[[Business intelligence|商业智能]] | [[Artificial intelligence|人工智能]]驱动下的[[Business intelligence|商业智能]] | ||
+ | |||
+ | Open Object Business Intelligence system aims to be a full featured open source Business Intelligence system written in Python. It implements a HOLAP (Hybride OLAP = ROLAP + MOLAP) cube and a MDX query engine based on SQLAlchemy. | ||
==概念== | ==概念== | ||
第44行: | 第48行: | ||
==项目== | ==项目== | ||
+ | *[https://github.com/OCA/reporting-engine Odoo Alternative Reporting Engine] | ||
*通过[https://github.com/druid-io/pydruid pydruid]集成[[druid.io]] | *通过[https://github.com/druid-io/pydruid pydruid]集成[[druid.io]] | ||
+ | *[https://www.willdooit.com/page/pentaho-reports 集成Pentaho] [[Pentaho]]报表 | ||
+ | *[https://github.com/pentaho/pentaho-kettle/tree/master/plugins/openerp kettle-openerp-plugin] | ||
+ | |||
+ | ==集成== | ||
+ | *集成[[Apache Druid]] | ||
+ | *集成[[Apache Kylin]] | ||
==图集== | ==图集== | ||
<gallery> | <gallery> | ||
+ | image:odoo-pm-project-report.png|项目报告 | ||
image:openerp-bi-arch.png|odoo BI | image:openerp-bi-arch.png|odoo BI | ||
image:openerp-bi-data-browser.png|向下钻取 | image:openerp-bi-data-browser.png|向下钻取 | ||
第57行: | 第69行: | ||
[[category:odoo]] | [[category:odoo]] | ||
+ | [[category:e3 odoo]] | ||
[[category:business intelligence]] | [[category:business intelligence]] | ||
[[category:python]] | [[category:python]] |
2022年3月12日 (六) 02:15的最后版本
odoo BI
目录 |
[编辑] 简介
Open Object Business Intelligence system aims to be a full featured open source Business Intelligence system written in Python. It implements a HOLAP (Hybride OLAP = ROLAP + MOLAP) cube and a MDX query engine based on SQLAlchemy.
[编辑] 概念
- Schema: A schema is a collection of N dimensions. It's the meta description of cubes.
- Hierarchy: A schema is divided in hierarchy, which are divided in dimensions.
- Dimension: A dimension is an attribute, or set of attributes. A dimension is divided in levels.
- Level: One level of sub-categories defined by dimensions.
- Measure: Meta data of the quantity your are measuring.
- Cube: A cube is a collection of N axis. A cube is an instance of a schema. A cube is mapped to a ‘SQL’ query through the use of his axis.
- Member: A member is a point within a dimension determined by a particular set of attribute values.
- Axis: An axis is composed by one or a set of members.
- Value: A value is an instance of a measure.
The cube will use:
- SQLAlchemy for all database communications
- XML-RPC for his external interfaces
- PyParser for MDX parsing
[编辑] 功能
- 表式图
利用完全适应您研究领域的单一表格即可概览所有数据
- 柱状图、折线图和饼图
针对相同数据在不同视图风格间转换,以便获得最具说明性的视图。
- 筛选数据
利用内置筛选条件在您的搜索字段内收集信息,并创建之后可保存和使用的自定义筛选条件。
- 导出数据
轻击几下即可从收集的数据中创建 Excel表格文件。
- 定制版面
创建自定义版面,仅包含您认为与自己业务更为相关的信息,轻轻一击,即可访问。
- 保存
创建筛选条件并将其保存在收藏夹列表中,以便之后随时访问。
[编辑] 模块
- olap http://doc.openerp.com/technical_guide/olap.html
- olap_crm http://doc.openerp.com/technical_guide/olap_crm.html
- olap_extract http://doc.openerp.com/technical_guide/olap_extract.html
- olap_sale http://doc.openerp.com/technical_guide/olap_sale.html
[编辑] 指南
[编辑] 项目
[编辑] 集成
[编辑] 图集
[编辑] 链接
分享您的观点