欢迎大家赞助一杯啤酒🍺 我们准备了下酒菜:Formal mathematics/Isabelle/ML, Formal verification/Coq/ACL2, C++/F#/Lisp
Machine translation
来自开放百科 - 灰狐
(版本间的差异)
小 (→项目) |
小 (→文档) |
||
(未显示1个用户的23个中间版本) | |||
第7行: | 第7行: | ||
==项目== | ==项目== | ||
+ | [[文件:OpenNMT-logo.png|right|OpenNMT]] | ||
+ | *[https://github.com/topics/neural-machine-translation Neural machine translation GitHub Topic] | ||
+ | *[https://github.com/topics/machine-translation Machine translation GitHub Topic] | ||
+ | *[https://www2.statmt.org/moses/ Moses] statistical machine translation system [https://github.com/moses-smt Moses @ GitHub] | ||
+ | *[https://machinetranslate.org/ Machine Translate] [https://machinetranslate.org/building/libraries-frameworks/ Neural machine translation (NMT) Libraries and frameworks] | ||
+ | *[https://github.com/marian-nmt/marian Marian] Fast Neural Machine Translation in [[C++]] | ||
+ | *[https://github.com/argosopentech/argos-translate Argos Translate] NMT, Uses [https://opennmt.net/ OpenNMT] for translations and [[PyQt]] for GUI. | ||
+ | *[https://github.com/jadore801120/attention-is-all-you-need-pytorch Attention is all you need: A Pytorch Implementation] | ||
+ | *[https://github.com/pytorch/fairseq Fairseq(-py)] | ||
+ | *[https://github.com/NiuTrans/MTBook 《机器翻译:基础与模型》]Machine Translation: Foundations and Models | ||
+ | *[https://github.com/nikitakit/self-attentive-parser Berkeley Neural Parser] | ||
+ | *[[灰狐翻译]] | ||
==文档== | ==文档== | ||
*[http://docs.huihoo.com/deep-learning/deeplearningsummerschool/2015/From-Language-Modelling-to-Machine-Translation.pdf From Language Modelling to Machine Translation] | *[http://docs.huihoo.com/deep-learning/deeplearningsummerschool/2015/From-Language-Modelling-to-Machine-Translation.pdf From Language Modelling to Machine Translation] | ||
+ | *[https://people.csail.mit.edu/koehn/publications/tutorial2003.pdf What’s New in Statistical Machine Translation (2003)] | ||
+ | *[https://github.com/NiuTrans/MT-paper-lists MT paper lists] | ||
+ | |||
+ | ==书籍== | ||
+ | |||
+ | ==课程== | ||
+ | *[http://mt-class.org/ Machine Translation] | ||
+ | *[https://www.inf.ed.ac.uk/teaching/courses/anlp/ Accelerated Natural Language Processing (ANLP)] | ||
+ | |||
+ | ==公司== | ||
+ | *[https://www.deepl.com/en/blog DeepL] | ||
+ | |||
+ | ==学院研究== | ||
+ | *[https://statmt.org/ Statistical and Neural Machine Translation] | ||
+ | *[https://machinetranslate.org/research-laboratories/research-laboratories/ Machine translation research laboratories] | ||
+ | *[https://www.microsoft.com/en-us/research/group/machine-translation-group/ Microsoft Machine Translation] | ||
+ | *[http://nlp.cs.berkeley.edu/ The Berkeley NLP Group] | ||
+ | *[https://nlp.stanford.edu/projects/mt.shtml The Stanford Natural Language Processing Group] | ||
+ | *[https://www.clsp.jhu.edu/ Center of Language and Speech Processing] | ||
==图集== | ==图集== | ||
+ | <gallery> | ||
+ | image:mtbook-guideline.png|知识体系 | ||
+ | image:NLU-NLP-ASR.png|NLU,NLP,ASR | ||
+ | image:attention-is-all-you-need-pytorch.png|Attention is all you need 模型架构 | ||
+ | </gallery> | ||
==链接== | ==链接== | ||
+ | *[https://www.aclweb.org Association for Computational Linguistics] | ||
*[http://www.infoq.com/cn/articles/machine-translation-bottleneck-trend 浅谈机器翻译之瓶颈及目前的研发趋势] | *[http://www.infoq.com/cn/articles/machine-translation-bottleneck-trend 浅谈机器翻译之瓶颈及目前的研发趋势] | ||
− | [[category: | + | [[category:computational linguistics]] |
[[category:natural language processing]] | [[category:natural language processing]] | ||
+ | [[category:artificial intelligence]] |
2022年11月17日 (四) 15:45的最后版本
您可以在Wikipedia上了解到此条目的英文信息 Machine translation Thanks, Wikipedia. |
Machine translation 机器翻译
目录 |
[编辑] 简介
AI同传:人工智能的圣杯。长期以来,机器翻译都是语言理解的圣杯。
[编辑] 项目
- Neural machine translation GitHub Topic
- Machine translation GitHub Topic
- Moses statistical machine translation system Moses @ GitHub
- Machine Translate Neural machine translation (NMT) Libraries and frameworks
- Marian Fast Neural Machine Translation in C++
- Argos Translate NMT, Uses OpenNMT for translations and PyQt for GUI.
- Attention is all you need: A Pytorch Implementation
- Fairseq(-py)
- 《机器翻译:基础与模型》Machine Translation: Foundations and Models
- Berkeley Neural Parser
- 灰狐翻译
[编辑] 文档
- From Language Modelling to Machine Translation
- What’s New in Statistical Machine Translation (2003)
- MT paper lists
[编辑] 书籍
[编辑] 课程
[编辑] 公司
[编辑] 学院研究
- Statistical and Neural Machine Translation
- Machine translation research laboratories
- Microsoft Machine Translation
- The Berkeley NLP Group
- The Stanford Natural Language Processing Group
- Center of Language and Speech Processing
[编辑] 图集
[编辑] 链接
分享您的观点