欢迎大家赞助一杯啤酒🍺 我们准备了下酒菜:Formal mathematics/Isabelle/ML, Formal verification/Coq/ACL2, C++/F#/Lisp
Machine learning
来自开放百科 - 灰狐
(版本间的差异)
小 (→链接) |
小 (→链接) |
||
第25行: | 第25行: | ||
*[http://v.163.com/special/opencourse/machinelearning.html 斯坦福大学公开课 :机器学习课程] | *[http://v.163.com/special/opencourse/machinelearning.html 斯坦福大学公开课 :机器学习课程] | ||
*[https://www.coursera.org/course/ml Stanford机器学习] | *[https://www.coursera.org/course/ml Stanford机器学习] | ||
+ | *[http://docs.huihoo.com/machine-learning/stanford-machine-learning-coursenotes/ Stanford Machine Learning Course notes] | ||
*[http://v.163.com/special/opencourse/learningfromdata.html 加州理工学院公开课:机器学习与数据挖掘] | *[http://v.163.com/special/opencourse/learningfromdata.html 加州理工学院公开课:机器学习与数据挖掘] | ||
*[http://docs.huihoo.com/machine-learning/ 机器学习开放文档] | *[http://docs.huihoo.com/machine-learning/ 机器学习开放文档] |
2014年7月24日 (四) 16:18的版本
您可以在Wikipedia上了解到此条目的英文信息 Machine learning Thanks, Wikipedia. |
machine learning 机器学习
机器学习是人工智能研究领域中的一个极其重要的方向。在现今大数据时代的背景下,捕获数据并从中萃取有价值的信息或模式,使得这一过去为分析师与数学家所专属的研究领域越来越为人们瞩目。
目录 |
项目
文档
- Deep Learning for Natural Language Processing and Related Applications
- Sibyl: 来自Google的大规模机器学习系统
- 百度:广告数据上的大规模机器学习
图书
链接
分享您的观点