欢迎大家赞助一杯啤酒🍺 我们准备了下酒菜:Formal mathematics/Isabelle/ML, Formal verification/Coq/ACL2, C++/F#/Lisp
Deep learning
小 (→项目) |
小 (→图集) |
||
第92行: | 第92行: | ||
image:deep-learning-input-output-flow.png|输入输出流 | image:deep-learning-input-output-flow.png|输入输出流 | ||
image:deep-learning-use-case-industries.png|工业应用 | image:deep-learning-use-case-industries.png|工业应用 | ||
+ | image:facebook-big-sur-gpu-server.jpg|Facebook Big Sur | ||
</gallery> | </gallery> | ||
2016年3月31日 (四) 15:45的版本
您可以在Wikipedia上了解到此条目的英文信息 Deep learning Thanks, Wikipedia. |
深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。
同机器学习方法一样,深度机器学习方法也有监督学习与无监督学习之分。不同的学习框架下建立的学习模型很是不同.例如,卷积神经网络(Convolutional neural network,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度信念网络(Deep Belief Nets,简称DBNs)就是一种无监督学习下的机器学习模型。
目录 |
项目
- Awesome Deep Learning
- Top 10 Deep Learning Projects on Github
- Deeplearning4j, 深度学习词汇表
- Apache SINGA
- H2O
- Caffe
- Torch
- theano
- TensorFlow
- keras
- 雅虎CaffeOnSpark, 雅虎如何在Hadoop集群上实现大规模分布式深度学习
- 百度warp-ctc
- mocha.jl
- JavaNN
- Emergent
- cuDNN
图书
文档
- Learning Deep Architectures for AI
- 神经网络与深度学习-幻灯片
- 神经网络与深度学习-讲义
- Deep Learning Methods and Applications
- The Applications of Deep Learning on Traffic Identification
- Deep Learning on Disassembly Data 反汇编数据深度学习
- Deep Learning Tutorial Release 0.1、在线版、GitHub
- A Tutorial on Deep Learning
- 记忆、阅读与理解 (深度学习 & NLP)
论文
- 1、无穷维度的词向量 Infinite Dimensional Word Embeddings
- 2、利用可逆学习进行基于梯度的超参数优化 Gradient-based Hyperparameter Optimization through Reversible Learning
- 3、在线加速学习 Speed Learning on the Fly
- 4、空间变换网络 Spatial Transformer Networks
- 5、聚类对于近似最大内积搜索来说是高效的 Clustering is Efficient for Approximate Maximum Inner Product Search
- 6、在线无回溯训练递归神经网络 Training Recurrent Networks Online without Backtracking
- 7、利用梯形网络进行半监督式学习 Semi-Supervised Learning with Ladder Network
- 8、通往基于神经网络的推理 Towards Neural Network-Based Reasoning
- 9、对递归神经网络序列预测的定期采样 Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks
- 10、LSTM:漫游搜索 LSTM: A Search Space Odyssey
入门资源索引
深度学习(Deep Learning)属于非常前沿的学科,没有现成的的综合型教材,主要是通过阅读大量论文和代码练习来学习。值得读的经典论文很多,下面介绍的一些教程中多少都有提及,另外就是去google重要文献。代码方面推荐使用python为基础的theano框架,因为它比较偏底层,可以从细节掌握如何构建一个深度学习模块,而且方便结合python在数据领域的其它积累,例如numpy。当然到了生产环境你可以再考虑torch之类的框架。从代码角度切入学习的好处是,理解起来不会像理论切入那么枯燥,可以很快做起一个好玩的东西。当然,最后你还是得补充理论的。下面精选介绍一些本人在学习时遇到的好教程。
- 1、入门首选
该站提供了一系列的theano代码示范,通过研究模仿,就可以学会包括NN/DBN/CNN/RNN在内的大部分主流技术。其中也有很多文献连接以供参考。
- 2、BP神经网络
第1部分的教程中,神经网格的参数是theano自动求导的,如果想深入了解细节,还得手动推导加代码实现一遍。该教程对BP神经网络的理论细节讲的非常好。
- 3、理论补充
该书内容比较广泛,虽未最终完成,但已初见气象。用来完善理论知识是再好不过。
前面三部分相当于导论,比较宽泛一些,该教程则是专注于卷积神经网络在图像视觉领域的运用,CNN方面知识由此深入。
本教程则偏重于深度学习在自然语言处理领域的运用,词向量等方面知识由此深入。
- 6、递归神经网络
该博客讲的RNN是非常棒的系列,不可不读。
- 7、keras框架
keras框架是基于theano的上层框架,容易快速出原型,网站中提供的大量实例也是非常难得的研究资料。
- 8、深度学习和NLP
该教程是第5部分的补充,理论讲的不多,theano和keras代码讲的很多,附带的代码笔记很有参考价值。
- 9、机器学习教程
牛津大学的机器学习课程,讲到了大量深度学习和强化学习的内容,适合于复习过一遍。
- 10、搭建硬件平台
到这里,你的理论和代码功力应该差不多入门了,可以组个GPU机器来大干一场了。可以参考笔者这个博客来攒个机器。
- 11、去kaggle实战玩玩吧
图集
链接
- Berkeley Vision and Learning Center
- Geoffrey E. Hinton 深度学习之父,效力Google
- 深度学习界的泰斗Yann LeCun,卷积神经网络之父,Facebook AI 研究院负责人
- Andrew Ng(吴恩达)加入百度负责深度学习研究院
- Deep Learning
- A Matlab toolbox for Deep Learning
- UFLDL-斯坦福大学Andrew Ng Deep Learning 教程,中文教程由@邓侃 博士组织翻译。
- 斯坦福大学深度学习与自然语言处理第一讲:引言
- 斯坦福大学深度学习与自然语言处理第二讲:词向量
- 斯坦福大学深度学习与自然语言处理第三讲:高级的词向量表示
- 微软深度学习人工智能超越Google Brain Adam 运行了 ImageNet 22K 的深度学习测评软件,Andrew Ng 说:“这是一种激进的策略,但是我知道为什么它会节省计算力,这种方法不错,很有趣。
- 100 Best GitHub: Deep Learning
- Deep learning 开放文档
- 复旦大学 吴立德教授 《深度学习课程》视频
- Deep Learning Libraries by Language
- NVIDIA Deep Learning Course: Class #1 – Introduction to Deep Learning
- NVIDIA Deep Learning Course: Class #2 – Getting Started with DIGITS
- NVIDIA Deep Learning Course: Class #3 – Getting started with Caffe
- Introduction to Deep Learning with Python
- 各种编程语言的深度学习库整理: Python、Matlab、CPP、Java、JavaScript、Lua、Julia、Lisp、Haskell、.NET、R等语言
- Awesome Deep Vision
- 我爱计算机
- 基于Hadoop集群的大规模分布式深度学习
- 深度学习-LeCun、Bengio和Hinton的联合综述
- 深度学习的最新进展及诺亚方舟实验室的研究
- 深度学习三十年创新路