欢迎大家赞助一杯啤酒🍺 我们准备了下酒菜:Formal mathematics/Isabelle/ML, Formal verification/Coq/ACL2, C++/F#/Lisp
Big data
来自开放百科 - 灰狐
(版本间的差异)
小 (→文档) |
小 (→文档) |
||
第6行: | 第6行: | ||
==文档== | ==文档== | ||
+ | *[http://docs.huihoo.com/javaone/2015/CON1534-Stream-Processing-Frameworks-and-Products-as-Game-Changers-for-the-Internet-of-Things.pdf Stream Processing Frameworks and Products as Game Changers for the Internet of Things] | ||
*[http://docs.huihoo.com/javaone/2015/CON3525-Java-Scala-and-Friends-Touring-the-Java-Bedrock-of-Big-Data.pdf Java, Scala, and Friends: Touring the Java Bedrock of Big Data] | *[http://docs.huihoo.com/javaone/2015/CON3525-Java-Scala-and-Friends-Touring-the-Java-Bedrock-of-Big-Data.pdf Java, Scala, and Friends: Touring the Java Bedrock of Big Data] | ||
*[http://docs.huihoo.com/blackhat/usa-2015/us-15-Gaddam-Securing-Your-Big-Data-Environment.pdf Securing Your Big Data Environment] | *[http://docs.huihoo.com/blackhat/usa-2015/us-15-Gaddam-Securing-Your-Big-Data-Environment.pdf Securing Your Big Data Environment] |
2016年6月9日 (四) 12:59的版本
您可以在Wikipedia上了解到此条目的英文信息 Big data Thanks, Wikipedia. |
big data 大数据
Apache Spark、Apache Hadoop 在大数据领域占据核心位置。
目录 |
文档
- Stream Processing Frameworks and Products as Game Changers for the Internet of Things
- Java, Scala, and Friends: Touring the Java Bedrock of Big Data
- Securing Your Big Data Environment
- Securing the Big Data Ecosystem
- Harnessing Big Data for Application Security Intelligence
- Security Business Intelligence– Big Data for Faster Detection/Response
- MADlib: Big Data Machine Learning in PostgreSQL
课程
图集
链接
- Awesome Big Data
- Awesome Public Datasets
- Awesome Hadoop
- Awesome Data Engineering
- Big Data Made Easy
- Facebook背后的数据团队
以下链接有几百个大数据幻灯片资料,大家可参考下:
- http://docs.huihoo.com/big-data/
- http://docs.huihoo.com/apache/spark/summit/
- http://docs.huihoo.com/oreilly/conferences/strataconf/
- 100 open source Big Data architecture papers for data professionals
- AWS Big Data Blog
- 2015 Bossie评选:最佳开源大数据工具
- MADlib: Big Data Machine Learning in SQL for Data Scientists
- IBM大数据和分析技术专题
- 华为大数据分析
分享您的观点