欢迎大家赞助一杯啤酒🍺 我们准备了下酒菜:Formal mathematics/Isabelle/ML, Formal verification/Coq/ACL2, C++/F#/Lisp
Apache MXNet
来自开放百科 - 灰狐
(版本间的差异)
小 (→新闻) |
小 (→新闻) |
||
第4行: | 第4行: | ||
==新闻== | ==新闻== | ||
− | *[https://incubator.apache.org/projects/mxnet.html | + | *[https://incubator.apache.org/projects/mxnet.html MXNet进入Apache基金会孵化器项目阶段] (2017.01.23) |
+ | |||
+ | ==简介== | ||
+ | Apache MXNet 是一种功能全面、可以灵活编程并且扩展能力超强的深度学习框架,支持包括[[Convolutional_neural_network|卷积神经网络]] (CNN) 与长短期记忆网络 (LSTM) 在内的顶尖深度模型。 | ||
+ | |||
+ | ==优势== | ||
+ | *支持本机分布式培训 | ||
+ | 支持关于多个 CPU/GPU 机器的分布式学习,以利用云规模。 | ||
+ | *灵活的编程模型 | ||
+ | 同时支持命令和符号编程,以最大程度提高效率和生产力。 | ||
+ | *可从云中移植到客户端 | ||
+ | 可在 CPU 或 GPU、群集、服务器、桌面或手机上运行。 | ||
+ | *支持多种语言 | ||
+ | 支持在 Python、R、Scala、Julia 和 C++ 中构建和学习模型。预先经过学习的模型可用于预测,甚至在采用 Matlab 或 Javascript 等更多种语言的情况下也是如此。 | ||
+ | *优化的性能 | ||
+ | 无论您的编程语言为何,经过优化的 C++ 后端引擎均可并行执行 I/O 和计算,且执行效果最佳。 | ||
+ | *Apache开源社区 | ||
==指南== | ==指南== |
2017年2月28日 (二) 06:31的版本
Distributed (Deep) Machine Learning Community,简称DMLC。
DMLC是由一群极客发起的组织,主要目标是提供快速高质量的开源机器学习工具。近来流行的boosting模型xgboost便是出自这个组织。开源了一个深度学习工具mxnet,这个工具含有R,python,julia等语言的接口。
目录 |
新闻
- MXNet进入Apache基金会孵化器项目阶段 (2017.01.23)
简介
Apache MXNet 是一种功能全面、可以灵活编程并且扩展能力超强的深度学习框架,支持包括卷积神经网络 (CNN) 与长短期记忆网络 (LSTM) 在内的顶尖深度模型。
优势
- 支持本机分布式培训
支持关于多个 CPU/GPU 机器的分布式学习,以利用云规模。
- 灵活的编程模型
同时支持命令和符号编程,以最大程度提高效率和生产力。
- 可从云中移植到客户端
可在 CPU 或 GPU、群集、服务器、桌面或手机上运行。
- 支持多种语言
支持在 Python、R、Scala、Julia 和 C++ 中构建和学习模型。预先经过学习的模型可用于预测,甚至在采用 Matlab 或 Javascript 等更多种语言的情况下也是如此。
- 优化的性能
无论您的编程语言为何,经过优化的 C++ 后端引擎均可并行执行 I/O 和计算,且执行效果最佳。
- Apache开源社区
指南
项目
- mxnet
- MXNet Scala Package
- xgboost
- MXNet.jl
- NNVM Build deep learning system by parts
AWS
开发者
图集
链接
分享您的观点