欢迎大家赞助一杯啤酒🍺 我们准备了下酒菜:Formal mathematics/Isabelle/ML, Formal verification/Coq/ACL2, C++/F#/Lisp
Formal mathematics
来自开放百科 - 灰狐
(版本间的差异)
小 (→理论) |
小 (→书籍) |
||
第60行: | 第60行: | ||
*[https://www.amazon.com/Mathematical-Proofs-Transition-Advanced-Mathematics/dp/0134746759 《Mathematical Proofs: A Transition to Advanced Mathematics》] Gary Chartrand, Albert D. Polimeni, Ping Zhang | *[https://www.amazon.com/Mathematical-Proofs-Transition-Advanced-Mathematics/dp/0134746759 《Mathematical Proofs: A Transition to Advanced Mathematics》] Gary Chartrand, Albert D. Polimeni, Ping Zhang | ||
*[https://github.com/HoTT/book 《Homotopy Type Theory: Univalent Foundations of Mathematics》] | *[https://github.com/HoTT/book 《Homotopy Type Theory: Univalent Foundations of Mathematics》] | ||
+ | *《形式语言与自动机导论》原书第3版,主要介绍形式语言、自动机、可计算性和相关内容。 | ||
+ | 主要内容包括:计算理论导引、有穷自动机、正则语言与正则文法、上下文无关语言及文法、下推自动机、图灵机、形式语言和自动机的层次结构、计算复杂性等。 | ||
==STEM== | ==STEM== |
2022年10月16日 (日) 14:20的版本
您可以在Wikipedia上了解到此条目的英文信息 Formal mathematics Thanks, Wikipedia. |
Formal mathematics 形式化数学
目录 |
简介
ML (Meta language -> Mathematics language) 很有寓意,ML 实力体现在编译器构建、自动化定理证明和形式化验证等。
理论
类型论在绝大多数计算机证明辅助系统中被用作集合论的替代理论,因为集合论的语言难以转化成计算机辅助证明的形式语言。
- HoTT Coq library homotopy type theory (HoTT) 同伦类型论
- homotopy type theory (HoTT) and Cubical type theory
- Hindley–Milner (HM) type system Classic Algorithm W for type inference.
形式语言
在数学、逻辑和计算机科学中,形式语言(Formal language)是用精确的数学或机器可处理的公式定义的语言。
语言家族的闭包(closure)特性
Regular(正则语言)DCFL(确定性上下文无关语言)CFL(上下文无关语言)IND(附标语言)CSL(上下文相关语言)recursive(递归语言)RE(递归可枚举语言)
项目
- Coq Univalent Mathematics
- Agda Univalent mathematics in Agda
- ACL2
- Isabelle
- Prolog logic programming language
- OCaml Zarith library 对任意精度(arbitrary-precision)的整数进行算术和逻辑运算
- Lean mathlib Lean
- IsarMathLib Proofs by humans, for humans, formally verified by Isabelle/ZF proof assistant
- lean-gym Lean
- Calculating Programs
- Charity is a categorical programming language
- Groupoid Infinity Institute 研究所正在做数学的形式化,其形式化编程语言称为 Anders 1.3.0,是立方体类型系统(cubical type systems)的 CCHM/HTS 变体(variant )Groupoid @ GitHub
- Henk: Pure Type System 是带有通用量词(universal quantifier)和宇宙无穷数量(infinity number of universes)的最小语言,用于一致的类型检查和规范化(consistent typechecking and normalization) made by Erlang
- Anders is a Modal HoTT proof assistant, written in OCaml and Pug.
- e language
文档
两千多年来,几何学一直是公理方法、逻辑和形式化的一个重要试验场。本幻灯片(66页PDF)将回顾几何学的历史、公理学、以及计算机辅助证明和证明检查的使用。
- Speaking Logic Type Theory A Brief Tutorial on the PVS Interactive Proof Assistant
- Formal Mathematics Statement Curriculum Learning
- ETPS: A System to Help Students Write Formal Proofs
- Theorems from CDS4LTL (Expanded) Calculational Deductive System for Linear Temporal Logic(线性时态逻辑的计算演绎系统)
- Lambda Calculus Teaching - Chair for Logic and Verification
- Interactive Theorem Proving (ITP) Course
书籍
- 《Implementing Mathematics with The Nuprl Proof Development System》
- 《Mathematical Proofs: A Transition to Advanced Mathematics》 Gary Chartrand, Albert D. Polimeni, Ping Zhang
- 《Homotopy Type Theory: Univalent Foundations of Mathematics》
- 《形式语言与自动机导论》原书第3版,主要介绍形式语言、自动机、可计算性和相关内容。
主要内容包括:计算理论导引、有穷自动机、正则语言与正则文法、上下文无关语言及文法、下推自动机、图灵机、形式语言和自动机的层次结构、计算复杂性等。
STEM
这是有关形式化方法、形式化技术的课程,质量很高。基于形式逻辑的技术,如模型检查、可满足性、静态分析和自动定理证明在建模、分析、验证等方面都有广泛应用。课程每年更新,已经有11年了(SSFT11 - SSFT22)。
图集
链接
- Metamath
- vdash a formal math wiki
- Formalized Mathematics IsarMathLib Blog
分享您的观点