欢迎大家赞助一杯啤酒🍺 我们准备了下酒菜:Formal mathematics/Isabelle/ML, Formal verification/Coq/ACL2, C++/F#/Lisp
Data mining
来自开放百科 - 灰狐
您可以在Wikipedia上了解到此条目的英文信息 Data mining Thanks, Wikipedia. |
data mining 数据挖掘
数据挖掘是从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示三个步骤。数据准备是从各种数据源中选取和集成用于数据挖掘的数据;规律寻找是用某种方法将数据中的规律找出来;规律表示是用尽可能符合用户习惯的方式(如可视化)将找出的数据呈现出来。
目录 |
简介
理论
项目
工作流
一个通用数据挖掘工作流包含以下步骤:
- Loading the data.
- Preprocessing, analyzing, and filtering the input data.
- Discovering patterns, affinities, clusters, and classes.
- Selecting the model features and the appropriate machine learning algorithm(s).
- Refining and validating the model.
- Improving the computational performance of the implementation.
以上信息来源《Scala for Machine Learning》
数据预处理
- Pentaho Data Preparation Starter Ki
- Market Guide for Self-Service Data Preparation
- Improving Data Preparation for Business Analytics
分析方法
数据挖掘的十种分析方法:
- 记忆基础推理法
- 市场购物篮分析
- 决策树(Decision Trees)
- 基因算法(Genetic Algorithm)
- 群集侦测技术
- 连结分析(Link Analysis)
- 在线分析处理(OLAP)
- 类神经网络(Neural Networks)
- 区别分析
- 罗吉斯回归分析
详细内容见大图
文档
- Data Mining: Concepts and Techniques, 3rd ed 幻灯片PPT
- Data Mining: Concepts and Techniques, 2nd ed 幻灯片PPT
- Predictive Analytics with Oracle Data Mining
专题
在大数据时代,描述性的数据分析已经无法满足业务的需求,数据预测分析技术正成为商业智能发展的新方向。本系列将为您介绍预测分析技术的总体概述,预测分析的数学算法,预测解决方案的构建过程以及部署等方面的内容。
课程
- 数据挖掘:理论与算法 最有趣的理论+最有用的算法=不得不学的数据科学。
讲义下载:
- 1. 走进数据科学:博大精深,美不胜收
- 2. 数据预处理:抽丝剥茧,去伪存真
- 3. 从贝叶斯到决策树:意料之外,情理之中
- 4. 神经网络:巨量并行,智慧无限
- 5. 支持向量机:数学之美,巅峰之作
- 6. 聚类分析:物以类聚,人以群分
- 7. 关联规则:营销购物,自有乾坤
- 8. 推荐算法:察言观色,投其所好
- 9. 集成学习:兼听则明,偏听则暗
- A. 进化计算:大道至简,万物之本
厂商
top eight data-mining software vendors in 2008 published in a Gartner study.
- Angoss Software
- Infor CRM Epiphany
- Portrait Software
- SAS
- SPSS
- ThinkAnalytics
- Unica
- Viscovery
图集
链接
分享您的观点