欢迎大家赞助一杯啤酒🍺 我们准备了下酒菜:Formal mathematics/Isabelle/ML, Formal verification/Coq/ACL2, C++/F#/Lisp
Open Provable Foundation
来自开放百科 - 灰狐
(版本间的差异)
小 (→图集) |
小 (→SMT) |
||
第12行: | 第12行: | ||
==SMT== | ==SMT== | ||
− | *[http://en.wikipedia.org/wiki/Satisfiability_Modulo_Theories Satisfiability Modulo Theories (SMT)] | + | *[http://en.wikipedia.org/wiki/Satisfiability_Modulo_Theories Satisfiability Modulo Theories (SMT)] [https://baike.sogou.com/v193442449.htm 可满足性模理论]指函数和关系符号在背景理论中进行解释的谓词逻辑公式的可满足性判定问题,SMT求解器已经成为软件工程、编程语言、信息安全领域的基础引擎。 |
*[https://smtlib.cs.uiowa.edu/ SMT-LIB] | *[https://smtlib.cs.uiowa.edu/ SMT-LIB] | ||
*[https://smt-comp.github.io/ International Satisfiability Modulo Theories Competition (SMT-COMP)] 国际可满足性模理论竞赛 | *[https://smt-comp.github.io/ International Satisfiability Modulo Theories Competition (SMT-COMP)] 国际可满足性模理论竞赛 |
2022年6月9日 (四) 07:30的版本
Open Provable Foundation
目录 |
简介
Open Provable Foundation(开放可证明基础)
理论
- 数学和逻辑
- 数理逻辑
- 证明论(元数学)
- 分析哲学
- 形式科学是指主要研究对象为抽象形态的科学,如逻辑、数学、数理逻辑、信息论、统计学(数理统计学)、理论计算机科学(计算理论)、经济学(博弈论)等。
SMT
- Satisfiability Modulo Theories (SMT) 可满足性模理论指函数和关系符号在背景理论中进行解释的谓词逻辑公式的可满足性判定问题,SMT求解器已经成为软件工程、编程语言、信息安全领域的基础引擎。
- SMT-LIB
- International Satisfiability Modulo Theories Competition (SMT-COMP) 国际可满足性模理论竞赛
项目
- Provably Awesome
- ML 语言家族适用于形式语言、计算机辅助定理证明、证明助理、逻辑语言、一阶逻辑、论证软件、代码验证等形式化领域。
- Haskell, Agda, Idris, Liquid Haskell 具有“证明即程序、命题为类型”的特征。
- F*
- ACL2
- proof assistant
- Coq
- Isabelle
- HOL = functional programming + logic HOL Interactive Theorem Prover 文档 HOL Theory Hierarchy (Theory Graph)
- seL4 The world's most highly assured OS kernel, specification and proofs with isabelle. The seL4 Haskell Model Haskell
- Trustworthy Systems Formal methods
- Hardware description language for Formal verification
图集
链接
分享您的观点